Baterie kondensatorów niskonapięciowych z załączaniem statycznym.
Seria OPTIM EMS-C

INSTRUKCJA OBSŁUGI
(M057B01-18-19A)
ZALECENIA DOTYCZĄCE BEZPIECZEŃSTWA

Należy postępować zgodnie z ostrzeżeniami podanymi w niniejszej instrukcji za pomocą symboli, które zostały opisane poniżej.

NIEBEZPIECZEŃSTWO

Ostrzega przed ryzykiem, które może spowodować obrażenia lub szkody materialne.

UWAGA

Wskazuje, że należy zwrócić szczególną uwagę na wskazany punkt.

W przypadku konieczności manipulowania urządzeniem w celu jego instalacji, uruchomienia lub konserwacji, należy mieć na uwadze, że:

UWAGA

Przed rozpoczęciem użytkowania urządzenia zapoznać się z treścią instrukcji

Jeśli nie przestrzega się lub nie wykonuje się prawidłowo wskazówek niniejszej instrukcji, oznaczonych tym symbolem, wówczas można spowodować szkody osobowe lub w sprzęcie i/lub w instalacjach.

Firma CIRCUTOR SA zastrzega sobie prawo do modyfikacji, bez uprzedniego powiadomienia, charakterystyk lub instrukcji produktu.

OGRANICZENIE ODPOWIEDZIALNOŚCI

CIRCUTOR SA zastrzega sobie prawo do dokonywania, bez uprzedniego powiadomienia, modyfikacji urządzenia lub specyfikacji sprzętu, podanych w niniejszej instrukcji.

CIRCUTOR SA udostępnia swoim klientom najnowsze wersje specyfikacji urządzeń oraz zaktualizowane instrukcje na swojej stronie internetowej.

www.circutor.com

CIRCUTOR SA zaleca stosowanie oryginalnych kabli i akcesoriów dostarczonych wraz z urządzeniem.
SPIS TREŚCI

1. KONTROLE PRZY ODBIORZE .. 3
 1.1. PROTOŁ KONOSZU .. 3
 1.2. TRANSPORT I PRZENOSZENIE ... 3
 1.3. MAGAZYNOWANIE ... 4

2. OPIS PRODUKTU .. 5
 2.1. ELEMENTY SKŁADOWE BATERII ... 5
 2.1.1. SZYBKII REGULATOR .. 5
 2.1.2. PŁYTA CPC4: STEROWANIE ZAŁĄCZANIEM KROKOWYM PRZY PRZECHODZENIU NAPIĘCIA SIECIOWEGO PRZEZ ZERO .. 5
 2.1.3. BLOK MOCY .. 5

3. INSTALACJA .. 9
 3.1. WSTĘPNE ZALECENIA .. 9
 3.2. PRZYGOTOWANIE .. 10
 3.3. ROZMIESZCZENIE .. 10
 3.4. PODŁĄCZENIE BATERII KONDENSATORÓW DO SIECI .. 10
 3.5. OBWÓD MOCY ... 10
 3.6. ZEWNĘTRZNE ELEMENTY ODLĄCZAJĄCE I ZABEZPIECZAJĄCE .. 10
 3.7. NAPIĘCIE POMOCNICZE STEROWANIA ... 10
 3.8. PODŁĄCZENIE PRZEWODU UZIEMIENIA .. 10
 3.9. PODŁĄCZENIE PRZEKLADNIKA PRĄDOWEGO (TC) .. 10

4. URUCHOMIENIE STATYCZNEJ BATERII KONDENSATORÓW ... 10
 4.1. PRZED ROZPOCZĘCIEM URUCHAMIANIA ... 10
 4.2. URUCHOMIENIE .. 10
 4.3. KONTROLA PO PODŁĄCZENIU BATERII I DOSTOSOWANIU REGULATORA .. 10

5. KONSERWACJA .. 10
 5.1. ZASADY DOTYCZĄCE BEZPIECZEŃSTWA ... 10
 5.2. KONSERWACJA PO ODLĄCZNIU BATERII .. 10
 5.2.1. PODSTAWOWY PROTOŁ KONSERWACJI .. 10
 5.2.2. ZACISNIĘCIE ZŁĄCZY ELEKTRYCZNYCH ... 10
 5.2.3. GŁOWNE ZASady KONTROLI WŁAŚCICIELÓW STATYCZNYCH .. 10
 5.2.4. GŁOWNE ZASady KONTROLI KONDENSATORÓW ... 10
 5.2.5. GŁOWNE ZASady KONTROLI REGULATORA .. 10
 5.2.6. CZYSZCZENIE ZŁĄCZY ELEKTRYCZNYCH .. 10
 5.3. KONSERWACJA PRZY PODŁĄCZONEJ BATERII .. 10
 5.3.1. KONTROLE REGULATORA .. 10

6. CHARAKTERYSTYKA TECHNICZNA .. 10

7. SCHEMAT TYPU OPTIM EMS-C ... 10

8. KONSERWACJA I OBSŁUGA TECHNICZNA ... 10

9. GWARANCJA ... 10

10. CERTYFIKAT CE .. 10
Tabela 1: Historia korekt.

<table>
<thead>
<tr>
<th>Data</th>
<th>Korekta</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/14</td>
<td>M057B01-18-14A</td>
<td>Wersja początkowa</td>
</tr>
<tr>
<td>11/19</td>
<td>M057B01-18-19A</td>
<td>zmiany w poniższych sekcjach: 3.2. - 4.2. - 10.</td>
</tr>
</tbody>
</table>

Uwaga: Rysunki urządzeń są podane wyłącznie tytułem ilustracji i mogą różnić się od urządzeń oryginalnych.
Przy odbiorze urządzenia należy sprawdzić następujące punkty:

a) Czy urządzenie odpowiada specyfikacji zamówienia.
b) Czy urządzenie nie doznało uszkodzeń podczas transportu.
c) Wykonać zewnętrzną kontrolę wzrokową urządzenia przed jego podłączeniem.
d) Sprawdzić, czy urządzenie posiada:
 - Instrukcję obsługi
 - Instrukcję instalacji regulatora.

W przypadku wystąpienia jakiegokolwiek problemu przy odbiorze, należy natychmiast skontaktować się z firmą transportową i/lub działem obsługi po- sprzedażnej firmy CIRCUTOR.

Transport, załadunek i wyładunek, oraz przenoszenie urządzenia powinny odbywać się z zachowaniem środków ostrożności oraz przy użyciu odpowiednich narzędzi ręcznych lub mechanicznych w celu uniknięcia uszkodzenia urządzenia. W przypadku, gdy urządzenie nie będzie natychmiast instalowane, należy go przechowywać w pomieszczeniu o twardym i wypoziomowanym podłożu, przestrzegając warunków magazynowania podanych w punkcie dotyczącym charakterystyk technicznych. W takiej sytuacji zaleca się przechowywanie urządzenia w oryginalnym opakowaniu ochronnym.

W przypadku transportu urządzenia na małą odległość, profile podpierające urządzenie na podłożu ułatwiają przenoszenie go za pomocą wózków typu transpaleta (paletowych) lub wózków podnośnikowych. (Figura 1)

![Figura 1: Transport za pomocą wózka paletowego (transpaleta).]
Środek ciężkości niektórych urządzeń może znajdować się na dużej wysokości. Z tego względu, przy przenoszeniu za pomocą wózków podnośnikowych zaleca się odpowiednie zamocowanie urządzenia i niewykonywanie gwałtownych manewrów. Zaleca się, aby nie podwieszać urządzenia na wysokości ponad 20 cm od podłogi.

Do rozładunku i przemieszczania urządzenia należy używać wózka podnośnikowego z szuflami, które powinny obejmować całą głębokość podstawy. W przypadku braku możliwości spełnienia tego warunku, szufle powinny być wystarczająco długie, aby podtrzymać podstawę na co najmniej ¾ głębokości. Szufle nośne powinny być płaskie i opierać się mocno na podstawie. Szafę należy podnosić, opierając szufle od spodu profilu, który wspiera urządzenie. (Figura 2).

Z powodu nierównego rozdziału obciążenia w urządzeniu, istnieje możliwość, że środek ciężkości będzie przesunięty względem środka szafy. Należy przedsięwziąć odpowiednie środki ostrożności, aby uniknąć przewrócenia urządzenia w przypadku gwałtownych manewrów.

Figura 2: Rozładunek za pomocą wózka podnośnikowego.

1.3.- MAGAZYNOWANIE

W celu magazynowania statycznych baterii kondensatorów, należy przestrzegać następujących zaleceń:

- Unikać umieszczania na nieregularnych powierzchniach.
- Nie umieszczać w strefach położonych na zewnątrz, wilgotnych lub narażonych na opryskanie wodą.
- Unikać źródeł ciepła (maksymalna temperatura otoczenia: 40°C)
- Unikać środowisk słonych i korozjnych.
- Unikać umieszczania urządzenia w strefach, w których wytwarzana jest duża ilość pyłu lub w których istnieje zanieczyszczenie na skutek czynników chemicznych lub innych.
- Nie umieszczać ładunków na szafach urządzeń.
2.- OPIS PRODUKTU

Celem niniejszej instrukcji jest pomoc w instalacji, uruchomieniu i konserwacji baterii kondensatorów niskonapięciowych (BT) z załączaniem statycznym serii OPTIM EMS-C. Prosimy o dokładne zapoznanie się z treścią instrukcji, aby uzyskać optymalne osiągi sprzętu.

2.1.- ELEMENTY SKŁADOWE BATERII

Pod względem elektrycznym urządzenie składa się z następujących bloków:

2.1.1. SZYBKI REGULATOR

Baterie statyczne są wyposażone w regulatorzy szybkich Computer Max 6f V12dc. Wyjść tych regulatorów są typu statycznego, to znaczy, że zamiast wyjść stykowego przekaźnikowego posiadają przełącznik na bazie półprzewodnika, co pozwala na szybkie przełączanie, praktycznie w każdym cyklu sieci.

Opisywane wyjścia dostarczają sygnał aktywacji 12 Vdc do wejść + i - płyt sterowania załączaniem przy różnicy napięcia równego zero dla typu CPC4.

Szybkie regulatory umożliwiają regulację z minimalną zwłoką, generalnie od 20 do 100 ms (patrz instrukcja lub skrócona instrukcja stosowanego regulatora)

2.1.2. PŁYTA CPC4: STEROWANIE ZAŁĄCZANIEM KROKOWYM PRZY PRZECHODZENIU NAPIĘCIA SIECIOWEGO PRZEZ ZERO

Baterie statyczne są wyposażone w płyty CPC4. Funkcja płyt CPC polega na sterowaniu załączaniem przy przechodzeniu napięcia zasilania przez zero w modułach tyrystor-dioda, zapobiegając powstawaniu prądów przejściowych załączania.

Typowy schemat podłączania kroku regulacji można zobaczyć na Figura 3, a dalsze szczegóły w punkcie „7.- schemat typu optim ems-c”.

Płyty CPC aktywują się za pomocą sygnału 12 Vdc dostarczanego przez wyjścia regulatora Computer Max 6f V12dc. Standardowe płyty CPC4 są przygotowane dla sieci UMAX = 440 V.
2.1.3. BLOK MOCY

Blok mocy urządzenia OPTIM EMS-C składa się z 2 do 4 zespołów półprzewodników tyrystor-dioda + kondensator trójfazowy + trójbiegunowy wyłącznik magnetotermiczny.

Każdy zespół składa się z jednego cylindrycznego kondensatora posiadającego 3 zaciski, 2 modułów tyrystor-dioda połączonych z ogólnym radiatorem, a także z elementów zabezpieczających dostosowanych do mocy modułu (trójbiegunowy wyłącznik magnetotermiczny).
3.- INSTALACJA

3.1.- WSTĘPNE ZALECENIA

W celu bezpiecznego użytkowania urządzenia, najważniejsze jest, aby osoby obsługujące urządzenie przestrzegały zasad bezpieczeństwa określonych w przepisach kraju użytkowania, stosując niezbędne środki ochrony osobistej i stosując się do poszczególnych zaleceń wskazanych w niniejszej instrukcji.

Przez wykonywaniem jakichkolwiek czynności przy urządzeniu, personel instalujący urządzenie lub zajmujący się jego konserwacją powinien przeczytać instrukcję ze zrozumieniem. Egzemplarz tej instrukcji powinien zawsze być dostępny w celu konsultacji dla pracowników zajmujących się konserwacją

Podłączenie elektryczne urządzenia do sieci publicznej powinno zostać wykonane zgodnie z normą EN-IEC60204-1 dotyczącą bezpieczeństwa instalacji elektrycznych niskiego napięcia.

Zaleca się, aby w przypadku przemieszczania urządzenia przy jego instalacji lub konserwacji zapewnić obecność kilku osób. W przypadku wykrycia uszkodzeń lub usterek podczas działania urządzenia lub okoliczności mogących zagrozić bezpieczeństwu, należy natychmiast przerwać pracę w tej strefie i odlączyć urządzenie w celu wykonania jego kontroli bez podłączonego napięcia.

Producent sprzętu nie ponosi odpowiedzialności za jakiejkolwiek szkody powstałe na skutek nieprzestrzegania przez użytkownika lub instalatora uwag i/lub zaleceń wskazanych w niniejszej instrukcji, ani za szkody wynikłe na skutek używania produktów lub akcesoriów nieoryginalnych lub innych marek.

W przypadku wykrycia anomalii lub awarii w urządzeniu, nie należy wykonywać nim żadnych operacji.

Bez uzyskania uprzedniego pisemnego zezwolenia od producenta, zabronione jest wykonywanie modyfikacji, poszerzenia lub przebudowy urządzenia.

Instalacja, obsługa i konserwacja urządzeń pod niskim napięciem (BT) powinny być wykonywane wyłącznie przez upoważnionych instalatorów. Zarządzenie dotyczące instalacji niskonapięciowych (Art. 22) określa w dokładny sposób, jakie wymogi powinni spełniać upoważnieni instalatorzy.

Dostęp do aktywnych elementów baterii kondensatorów z załączaniem statycznym, podłączonej uprzednio do napięcia, jest możliwy dopiero po upływie minimum 5 minut po odłączeniu zasilania.
Przed dotknięciem zacisków lub aktywnych elementów urządzenia zawsze sprawdzać, czy nie ma napięcia. W przypadku konieczności manipulowania lub dotykania zacisków lub innych elementów panelu sterowania, używać środków ochrony osobistej i odpowiednio zaizolowanych narzędzi.

Po wykonaniu operacji i przed ponownym podłączeniem do zasilania urządzenia, sprawdzić, czy jego osłona jest prawidłowo zamknięta i czy w jego wnętrzu nie znajdują się elementy lub narzędzia, które mogłyby wywołać spięcie.

Przed odłączeniem uzwojenia wtórnego przekładnika prądowego należy zawsze dokonać zwarcia tego obwodu. Działanie przekładnika prądowego z otwartym uzwojeniem wtórnym spowoduje przepięcie, które może spowodować jego uszkodzenie i porażenie prądem osoby, która nim manipuluje.

3.2.- PRZYGOTOWANIE

Baterie statyczne CIRCUTOR typu OPTIM EMS-C są przygotowane do łatwej instalacji, a następnie uruchomienia.

Odpakować urządzenie i sprawdzić, czy charakterystyki elektryczne urządzenia są zgodne z charakterystykami sieci, do której należy podłączyć urządzenie. W tym celu skontrolować etykietę z charakterystykami umieszczoną we wnętrzu szafy, obok regulatora, patrz Figura 4.

Najważniejsze dane, które należy sprawdzić to:

✔ Napięcie i częstotliwość sieci, \(U_n / f_n \)
✔ Moc znamionowa baterii, \(Q_n \) (kvar) i stopnie
✔ Pobór prądu, \(I_{\text{max}} \). Wielkość tego prądu należy uwzględnić w celu zwymiarowania przewodu zasilającego urządzenie i, ewentualnie, elementów odłączających i zabezpieczających, które zamierza się przed nim umieścić.
✔ Warunki otoczenia. (Patrz „6.- CHARAKTERYSTYKA TECHNICZNA”)

![Figura 4: Etykieta z charakterystykami.](image)
3.3.- ROZMIESZCZENIE

Ważne jest, aby zachować minimalne odległości wokół urządzenia, co umożliwi jego chłodzenie.
Biorąc pod uwagę, że mamy do czynienia z szafą do montażu naściennego, należy wykorzystać do zamocowania do ściany 3 otwory o średnicy 10 mm znajdujące się w tylnej części szafy, zgodnie z Figura 5, użyczając elementów mocujących odpowiednio dostosowanych w celu utrzymania ciężaru.

![Figura 5: Punkty mocowania naściennego baterii OPTIM EMS-C.](image)

W przedniej części szafy należy przestrzegać minimalnej odległości wentylacyjnej wynoszącej około 60 cm względem ścian innych urządzeń lub obiektów budownictwa inżynieryjnego.
Jeśli chodzi o ściany boczne, zaleca się pozostawienie co najmniej 20 cm między ścianami bocznymi sąsiednich szaf.

Uwaga: Urządzenia statyczne posiadają aluminiowy radiator do chłodzenia tyrystorów. Należy okresowo czyścić radiatory za pomocą szczotki lub sprężonego powietrza, i zadbać, aby miały maksymalną wentylację.

Zapewnić łatwy dostęp do urządzenia.

Warunki środowiskowe dotyczące lokalizacji urządzenia nie powinny przekraczać wartości granicznych określonych w charakterystykach technicznych (Patrz **6.- CHARAKTERYSTYKA TECHNICZNA**)

Aby uzyskać prawidłową wentylację, urządzenie powinno być umieszczone w pozycji pionowej.

Zgodnie z Zarządzeniem dotyczącym instalacji niskonapięciowych, urządzenie po zainstalowa-
niu powinno być zabezpieczone przed bezpośrednim lub pośrednim kontaktem. Z tego względu zaleca się zainstalowanie wyłącznika automatycznego i zabezpieczenia różnicowoprądowego dla przewodu zasilania baterii kondensatorów.

3.4.-PODŁĄCZENIE BATERII KONDENSATORÓW DO SIECI

<table>
<thead>
<tr>
<th>!</th>
<th>Sprawdzić, czy napięcie znamionowe baterii kondensatorów jest zgodne z napięciem między fazami w sieci, do której bateria będzie podłączona. W związku z tym wymogiem, należy zapoznać się z punktem „3.2.- PRZYGOTOWANIE” i sprawdzić na etykiecie wartość znamionową napięcia U_{n} i częstotliwości f_{n} baterii EMS-C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>W celu włożenia przewodów do szafy baterii, zawsze używać dostosowane do tego celu wejście umieszczone w podstawie szafy, po lewej stronie (widok z przodu).</td>
</tr>
<tr>
<td>!</td>
<td>Nie poddawać mechanicznej obróbce innych elementów szafy w celu zapewnienia przejścia przewodów lub zamocowania wsporników. W wyniku mechanicznej obróbki powstają wióry, które mogą spowodować zwarcia.</td>
</tr>
</tbody>
</table>

3.5.-OBWÓD MOCY

Podłączyć zaciski wejściowe L1, L2 i L3 (obwód mocy) do sieci za pomocą przewodów o odpowiednim przekroju, zgodnie z REBT, ITC-BT-19. Z zasady, dla przewodów fazowych stosuje się następujący kod kolorów: L1 (czarny), L2 (brązowy), L3 (szary).

W celu zwymiarowania przewodów fazowych, należy uwzględnić maksymalny prąd znamionowy I_{max} wskazany na etykiecie urządzenia i należy przewidzieć przeciążenie w stanach przejściowych wynoszące półtorakrotność I_{max}.

![Figura 6: Zaciski wejściowe L1, L2 i L3 w celu podłączenia do sieci baterii OPTIM EMS-C.](image)
3.6.- ZEWNĘTRZNE ELEMENTY ODŁĄCZAJĄCE I ZABEZPIECZAJĄCE

Bateria kondensatorów posiada wewnętrzny ręczny odłącznik czterobiegunowy, tym niemniej powinna zostać podłączona do przewodu, w którym występuje wyłącznik automatyczny, oraz zgodnie z REBT i w zależności od sposobu uziemienia, również zabezpieczenie różnicowoprądowe w głównej części.

Elementy zabezpieczające, odłączniki i/lub wyłączniki, które zostają dodane jako elementy zewnętrzne baterii, powinny zostać zwymiarowane co najmniej w taki sposób, aby zapewnić wytrzymałość prądową przekraczającą półtora raza wartość podaną na etykiecie (REBT, ITC-BT-48).

W przypadku instalowania elementu zabezpieczenia różnicowoprądowego specjalnie przeznaczonego dla baterii, powinien on posiadać możliwość regulacji czułości i zwłoki zadziałania.

W przypadku baterii kondensatorów wyposażonych w regulator standardowy mierzący prąd tylko w jednej fazie, zaleca się, aby przekładnik prądowy (TC) znajdował się w fazie, która biegnie do L1 (przewód czarny).
Wyjścia S1 i S2 przekładnika prądowego (TC) powinny być podłączone do zacisków baterii o tej samej nazwie.

Aby uzyskać dalsze informacje dotyczące podłączenia przekładnika prądowego (TC), patrz punkt „3.9.- PODŁĄCZENIE PRZEKLADNIKA PRądowego (TC)”

3.7.- NAPIĘCIE POMOCNICZE STEROWANIA

Standardowe modele baterii OPTIM EMS-C nie wymagają pomocniczego napięcia sterowania lub załączania.

3.8.- PODŁĄCZENIE PRZEWODU UZIEMIENIA

Podłączyć zacisk uziemienia baterii znajdujący się w panelu sterowania urządzenia (Figura 7) do zewnętrznego przewodu uziemiającego.

Przekrój przewodu uziemiającego należy dobrać zgodnie z dopuszczalnymi wartościami granicznymi natężenia ustalonymi przez REBT (ITC-BT-19 – Instalacje wewnętrzne lub odbiorcze).
3.9.- PODŁĄCZENIE PRZEKŁADNIKA PRĄDOWEGO (TC)

Należy umieścić przekładnik prądowy (TC) na zewnątrz baterii kondensatorów, dokonując pomiaru całkowitego prądu obciążenia oraz prądu obciążenia baterii (Figura 8).

Standardowy przekładnik powinien charakteryzować się prądem znamionowym na wyjściu równym 5 A w uzwojeniu wtórnym.
Zaleca się, aby podłączyć przekładnik prądowy (TC) do fazy L1 zgodnie z kierunkiem przepływu prądu od P1 do P2 (Figura 8) i podłączyć uzwojenie wtórne (zaciski S1, S2) do zacisków baterii noszących tę samą nazwę (Figura 8).

Unikać przepływu prądu przez uzwojenie pierwotne przekładnika prądowego (TC) przed podłączeniem uzwojenia wtórnego do zacisków S1 S2 baterii. Jeśli konieczna jest instalacja przekładnika prądowego (TC) z instalacją pod obciążeniem, należy zewrzeć S1 i S2, gdy nie są podłączone do baterii.

Wartość prądu w uzwojeniu pierwotnym przekładnika prądowego (TC) powinna być równa lub trochę wyższa od kalibracji wyłącznika głównego instalacji. Zatem przekładnik prądowy (TC) powinien zapewniać pomiar maksymalnego natężenia prądu, które według przewidywań będzie pobierane przez wszystkie kompensowane obciążenia.

Figura 7: Zacisk uziemiający do zewnętrznego złącza uziemiającego baterii OPTIM EMS-C.

Figura 8: Instalacja zewnętrznego przekładnika prądowego (TC).
Punkt podłączenia przekładnika prądowego (TC) w przypadku baterii, która kompensuje całą instalację, znajduje się za wyłącznikiem głównym instalacji.

Aby uniknąć nadmiernego osłabienia sygnału, zaleca się, by minimalny przekrój przewodów uzwojenia wtórnego (zaciski S1, S2) wynosił co najmniej $2,5 \text{ mm}^2$.

![Zaciski podłączeniowe przekładnika prądowego (TC).](image1)

Po zainstalowaniu przewodów, odłączyć mostek łączący zaciski S1 i S2 baterii (Figura 10)

![Mostek w celu zwarcia uzwojenia wtórnego przekładnika prądowego (TC).](image2)

<table>
<thead>
<tr>
<th>Uwaga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gdy zamierza się wymienić lub odłączyć przekładnik prądowy, ważne jest, aby zawsze wcześniej zamknąć mostek łączący S1 i S2.</td>
</tr>
</tbody>
</table>
4.- URUCHOMIENIE STATYCZNEJ BATERII KONDENSATORÓW

4.1.- PRZED ROZPOCZĘCIEM URUCHAMIANIA

Statyczne baterie kondensatorów zawierają regulator współczynnika mocy.

Przed uruchomieniem, należy zapoznać się z działaniem opisywanego regulatora, dlatego do wszystkich baterii dołączona jest instrukcja lub skrócona instrukcja stosowanego regulatora.

Należy odnaleźć wspomnianą instrukcję lub skróconą instrukcję i przechowywać ją w łatwo dostępnym miejscu w celu wykorzystania podczas uruchamiania.

W przypadku OPTIME EMS-C, regulator powinien posiadać wyjście statyczne o napięciu sterowania 12 Vdc typu Computer Max 6f V12dc lub równoważne.

Aby dostosować regulator wbudowany w baterię kondensatorów i wykonać optymalne uruchomienie, konieczne jest, aby stan obciążenia instalacji wynosił co najmniej od 30% do 40% obciążenia znamionowego, dla którego została z wymirowana bateria.

W przypadku, gdy nie będzie można wprowadzić wszystkich stopni regulacji, można wymusić ręczne załączanie, aby dokonać kontroli wszystkich stopni.

W momentach niskiego obciążenia, nie należy załączać ręcznie całości baterii, ponieważ w określonych przypadkach mogą wystąpić zjawiska rezonansu z transformatorem zasilającym (sieciowym).

4.2.- URUCHOMIENIE

Przed przystąpieniem do wykonywania czynności przy urządzeniach, należy zapewnić przestrzeganie zasad bezpieczeństwa opisanych w punkcie „3.- INSTALACJA” niniejszej instrukcji.

Należy ścisłe przestrzegać norm i przepisów prawnych obowiązujących w kraju, w którym instaluje się lub obsługuje się baterię kondensatorów.

1.- Upewnić się, że wewnętrzny dwubiegunowy wyłącznik magnetotermiczny, który powoduje załączenie regulatora (określony jako Figura 11), znajduje się w odpowiedniej pozycji.

Figura 11: Dwubiegunowy wyłącznik magnetotermiczny obwodu zasilania regulatora.
2.- Podłączyć zasilanie rozdzielnicy i sprawdzić, czy natychmiast podświetla się wyświetlacz regulatora.
W przeciwnym razie zaprzestać wykonywania działań i wykonać kontrolę opisaną w poprzednim punkcie.

3.- Sprawdzić wskazanie cos φ regulatora.
Jeśli wskazanie znajduje się poza zakresem 0,5 do 1, istnieje podejrzenie, że przekładnik prądowy i / lub zasilanie regulatora są źle podłączone.

Regulator **Computer Max 6f 12Vdc** (Figura 12) wykorzystuje tylko jeden przekładnik prądowy. Jego podłączenie wykonuje się zgodnie z Figura 13 (zaleca się umieszczenie przekładnika prądowego w fazie L1, a zasilanie napięciowe wziąć z faz L2 i L3).

![Figura 12: Regulator Computer Max. (Zdjęcie tytułem przykładu, może nie pokrywać się z modelem użytym w danym urządzeniu).](image)

![Figura 13: Podłączenie regulatora Computer Max.](image)

4.- Po zapewnieniu prawidłowego podłączenia regulatora, należy dostosować parametry regulatora do instalacji, którą będzie kompensował.
W tym celu należy przestrzegać wskazówek instrukcji lub skróconej instrukcji regulatora, dołączonej do baterii.
1.- Po uruchomieniu, sprawdzić prawidłowe działanie urządzenia. Objawem prawidłowego działania jest to, że po upływie czasu reakcji regulatora, wyświetlacz wskazuje \(\cos \phi \) bliski 1, a licznik mocy biernej powinien się zatrzymać.

2.- Sprawdzić, czy napięcie zasilania nie przekracza wartości znamionowej +10% (IEC 60831-1).

3.- Sprawdzić prąd pobierany przez każdy zespół kondensatora. W normalnych warunkach, jego wartość powinna być zbliżona do znamionowej (patrz Tabela 5) i nigdy nie powinna przekraczać w sposób nieprzerwany 1,3-krotności tej wartości.

Stały pobór prądu, we wszystkich kondensatorach, przekraczający wartość znamionową, może być spowodowany obecnością harmonicznych w sieci lub zbyt wysokim napięciem zasilania. Obie sytuacje są szkodliwe dla kondensatorów i dla płyt sterujących.

Jeśli występuje odbiegający od normy pobór prądu tylko w niektórych kondensatorach, wówczas oznacza to, że niektóre kondensatory są uszkodzone.

4.- Zgodnie z normą IEC 60831-1, kondensator jest przygotowany do stałej pracy przy napięciu znamionowym i przy przepięciu sięgającym około 10% przez 8 godzin na dobę.

| Sprawdzić temperaturę roboczą kondensatorów po 24 godzinach działania. Kapsuła kondensatorów powinna mieć temperaturę poniżej 40°C. |
5.- KONSERWACJA

5.1.- ZASADY DOTYCZĄCE BEZPIECZEŃSTWA

Przed przystąpieniem do wykonywania czynności przy urządzeniach, należy uwzględnić zasady bezpieczeństwa opisane w punkcie „3.1.- WSTĘPNE ZALECENIA”
Należy ściśle przestrzegać norm i przepisów prawnych obowiązujących w kraju, w którym instaluje się lub obsługuje się baterię kondensatorów.

5.2.- KONSERWACJA PO ODŁĄCZENIU BATERII

5.2.1. PODSTAWOWY PROTOKÓŁ KONSERWACJI

Raz w miesiącu:

- Sprawdzać wizualnie kondensatory.
- Sprawdzać zabezpieczające wyłączniki magnetotermiczne.
- Kontrolovac temperaturę otoczenia (przeciętna 30°C. Zgodnie z IEC 60831).
- Sprawdzać napięcie robocze (zwłaszcza w momentach niskiego obciążenia, nie powinno przekraczać wartości znamionowej +10%).

Raz na pół roku:

- Dbać o czystość zacisków kondensatorów i dławików.
- Sprawdzać, czy w tyrystorach nie występuje zwarcie.
W tym celu sprawdzać, czy po odcięciu zasilania regulatora nie występuje prąd w żadnej z faz kondensatorów.
- Sprawdzać, czy prąd w kondensatorach nie jest niższy niż 75% ani wyższy niż 120% wartości znamionowej na fazę i czy nie istnieje niezrównoważenie między fazami przekraczające 15%.

Raz na rok:

- Sprawdzać pojemność kondensatorów w poszczególnych krokach regulacji.
Ocena pośrednia może polegać na sprawdzeniu, czy pobór prądu jest taki jak wskazano w Tabela 5 przy maksymalnym odchyleniu ± 10%.
- Sprawdzać zaciśnięcie złączy na zaciskach poszczególnych elementów mocy.
- Kontrola wyłączników magnetotermicznych.
- **Obwód mocy:** Wyłączniki magnetotermiczne, sprawdzić ciągłość i temperaturę.
- **Obwód sterowania:** Dwubiegunowy wyłącznik magnetotermiczny, sprawdzić ciągłość i temperaturę.
5.2.2. ZACIŚNIĘCIE ZŁĄCZY ELEKTRYCZNYCH

Złącza powinny być zaciśnięte. Momenty zaciskania podstaw bezpieczników są podane w Tabela 2.

Tabela 2: Momenty zaciskania przewodów mocy do trójbiegunowych wyłączników magnetotermicznych.

<table>
<thead>
<tr>
<th>Wyłącznik magnetotermiczny</th>
<th>Zaciskanie (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In ≤ 3 x 63 A</td>
<td>2</td>
</tr>
</tbody>
</table>

5.2.3. GŁÓWNE ZASADY KONTROLI WYŁĄCZNIKÓW STATYCZNYCH

- Sprawdzić, czy elementy z tworzywa sztucznego nie są poczerniałe i czy nie widać oznak spalenia ani stwardnienia.
- Sprawdzić, czy głowica jest prawidłowo wsunięta.
- Sprawdzić zaciśnięcie przewodów i zacisków zgodnie z Tabela 3.

Tabela 3: Momenty zaciskania przewodów do półprzewodników

<table>
<thead>
<tr>
<th>Typ tyrystora</th>
<th>Zaciskanie złącza przewodu mocy (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IXYS</td>
<td>3,25</td>
</tr>
</tbody>
</table>

- Zaciski powinny być czyste.
- **Czystość**: W zanieczyszczonych środowiskach (pył, trociny, metalowe wióry itd.). Okresowo odkurzać poprzez zasysanie pyłu i pozostałości w stanie stałym. Nie wyznacza się częstotliwości czyszczenia, wszystko zależy od stopnia zanieczyszczenia na skutek przeniknięcia brudu do szafy baterii.

5.2.4. GŁÓWNE ZASADY KONTROLI KONDENSATORÓW

- Sprawdzić przewody i zaciski. Nie powinny być rozgrzane ani poczerniałe.
- Zaciski powinny być czyste.
- Sprawdzić zaciśnięcie zacisków kondensatora zgodnie z Tabela 4.

Tabela 4: Momenty zaciskania przewodów do zacisków kondensatorów.

<table>
<thead>
<tr>
<th>Kondensator</th>
<th>Zaciskanie (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLZ FP</td>
<td>2</td>
</tr>
</tbody>
</table>

5.2.5. GŁÓWNE ZASADY KONTROLI REGULATORA

- Sprawdzić, czy w regulatorze nie występują oznaki uszkodzenia i czy wyświetlacż wyświetla w sposób normalny.
- Sprawdzić przewody i zaciski. Powinny być czyste i nie powinny być stwardniałe ani rozgrzane.
- Sprawdzić złącza. Skontrolować, czy zaciski są prawidłowo zaciśnięte. Zalecany moment zaciskania wynosi 0,6 Nm.
5.2.6. CZYSZCZENIE SZAFY

✓ Usunąć ewentualne cząstki stałe.
✓ Oczyścić wnętrze szafy.
✓ Oczyścić kratki wentylacyjne.

5.3.- KONSERWACJA PRZY PODŁĄCZONEJ BATERII

✓ Sprawdzić, czy wyłącznik główny włącza się i wyłącza bez wymuszania działania.
✓ Jeśli występuje osobne zabezpieczenie różnicowoprądowe baterii, sprawdzić, czy działa, wciskając przycisk testowy.
✓ Wymusić załączenie i odłączenie kondensatorów w trybie ręcznym. (patrz instrukcja lub skrócona instrukcja regulatora, aby dowiedzieć się, jak wykonać ten manewr) i wykonać następujące kontrole:

 • Sprawdzić, czy kroki regulacji załączają się i odłączają w sposób normalny.
 • Sprawdzić, czy przy odłączonym kroku regulacji nie występuje pobór energii w żadnej z faz. Odnotowanie jakiegokolwiek poboru energii oznacza usterkę któregoś z tyristorów i, w konsekwencji, występowanie zwarcia.
 • Sprawdzić pobór energii przez poszczególne kroki regulacji, w każdej z faz. Prawidłowe wartości podano w Tabela 5 w zależności od mocy kroków regulacji.

<table>
<thead>
<tr>
<th>Moc przy 3 x 400 V</th>
<th>In</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 kvar</td>
<td>3,6 A</td>
</tr>
<tr>
<td>5 kvar</td>
<td>7,2 A</td>
</tr>
<tr>
<td>7,5 kvar</td>
<td>10,8 A</td>
</tr>
<tr>
<td>10 kvar</td>
<td>14,4 A</td>
</tr>
<tr>
<td>12,5 kvar</td>
<td>18 A</td>
</tr>
<tr>
<td>15 kvar</td>
<td>21,6 A</td>
</tr>
<tr>
<td>20 kvar</td>
<td>28,8 A</td>
</tr>
<tr>
<td>25 kvar</td>
<td>36 A</td>
</tr>
</tbody>
</table>

Uwaga: Jeśli pobory energii przez kroki regulacji są o około 25% niższe od podanych w Tabela 5 i napięcie znajduje się w granicach tolerancji, stanowi to objaw zniszczenia kondensatorów. W przypadku wykrycia tego zjawiska w którymś z kroków regulacji, zaleca się zastąpienie elementu częścią zamiennej.

Uwaga: Jeśli pobory energii przez kroki regulacji przekraczają o ponad 10% wartości podane w Tabela 5, może to stanowić objaw występowania rezonansu. W razie wykrycia tego zjawiska, należy zmierzyć THD napięcia w sieci (powinien być niższy niż 5%).
5.3.1. KONTROLE REGULATORA

Patrz instrukcja lub skrócona instrukcja regulatora zastosowanego w baterii.
Ta instrukcja lub skrócona instrukcja jest zawsze dostarczana z baterią

✓ Sprawdzić, czy nie występują uszkodzone segmenty wyświetlacza (nienaturalne błyszczenie).
✓ Sprawdzić, czy działa klawiatura regulatora:
 ▪ Wejść do Setupu i sprawdzić wyregulowane wartości.
 ▪ Wymusić ręczne załączenie i odlączenie jednego kroku regulacji.
6.- CHARAKTERYSTYKA TECHNICZNA

Charakterystyki elektryczne

<table>
<thead>
<tr>
<th>Parametry</th>
<th>Wartości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napięcie robocze i częstotliwość znamionowa</td>
<td>Un / fn, podane na etykiecie</td>
</tr>
<tr>
<td>Napięcie obliczeniowe</td>
<td>Un + 10% (440 V dla urządzeń 400 V)</td>
</tr>
<tr>
<td>Moc znamionowa i podział kroków regulacji</td>
<td>Qn i stopnie, (patrz etykieta)</td>
</tr>
<tr>
<td>Straty całkowite</td>
<td>Typowe 1 W / kvar</td>
</tr>
<tr>
<td>Napięcie resztkowe rozładowania</td>
<td>75 V po 3 minutach</td>
</tr>
<tr>
<td>Zdolność przeciążeniowa</td>
<td>1,3 In w każdym z elementów</td>
</tr>
<tr>
<td>Napięcie pomocnicze</td>
<td>Uaux, podane na etykiecie</td>
</tr>
<tr>
<td>Przekładnik prądowy</td>
<td>Uzwojenie wtórne 5 A, (Przekładnik In/5 A)</td>
</tr>
</tbody>
</table>

UWAGA: Minimalny przekrój przewodu 2,5 mm².

Zabezpieczenia

<table>
<thead>
<tr>
<th>Bezpieczniki</th>
<th>Trójbiegunowy wyłącznik magnetotermiczny przypadający na stopień regulacji, krzywa C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Icc = 6 kA / 400 V</td>
</tr>
</tbody>
</table>

Charakterystyki kondensatorów

<table>
<thead>
<tr>
<th>Parametry</th>
<th>Wartości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerancja pojemności</td>
<td>± 10%</td>
</tr>
<tr>
<td>Poziom izolacji względem masy</td>
<td>3 kV / 50Hz</td>
</tr>
<tr>
<td>Test impulsowy</td>
<td>15 kV, fala typu piorun 1,2/50 / µs</td>
</tr>
<tr>
<td>Zabezpieczenia</td>
<td>Bezpieczniki wewnętrzne i system nadciśnieniowy</td>
</tr>
<tr>
<td>Zgodność z normami</td>
<td>UNE EN 60831</td>
</tr>
</tbody>
</table>

Charakterystyki otoczenia

<table>
<thead>
<tr>
<th>Parametry</th>
<th>Wartości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maksymalna temperatura kondensatorów</td>
<td>Kategoria D zgodnie z normą EN 60831-1</td>
</tr>
<tr>
<td>Kategorię D</td>
<td>Zgodnie z normą EN 60831-1</td>
</tr>
<tr>
<td>Maksymalna w ciągu 1h</td>
<td>55°C</td>
</tr>
<tr>
<td>Średnia w ciągu 24h</td>
<td>45°C</td>
</tr>
<tr>
<td>Średnia roczna</td>
<td>35°C</td>
</tr>
<tr>
<td>Wentylacja szafy</td>
<td>Naturalna dla zewnętrznej Totocz ≤ 40°C. W przypadku zewnętrznej Totocz > 40°C należy chłodzić pomieszczenie, w którym znajduje się bateria</td>
</tr>
<tr>
<td>Maksymalna wilgotność względna</td>
<td>80%</td>
</tr>
<tr>
<td>Maksymalna wysokość</td>
<td>1000 m</td>
</tr>
<tr>
<td>Klasa ochrony</td>
<td>Podana na etykiecie</td>
</tr>
</tbody>
</table>

Charakterystyki mechaniczne

<table>
<thead>
<tr>
<th>Parametry</th>
<th>Wartości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wymiary</td>
<td>545 x 710 x 220 mm</td>
</tr>
<tr>
<td>Maksymalny ciężar</td>
<td>41 kg</td>
</tr>
<tr>
<td>Lakier</td>
<td>Typu Epoxy suszony w piecu</td>
</tr>
<tr>
<td>Kolory standardowe</td>
<td>RAL 7035 Szary; RAL 3005 Ciemnoczerwony</td>
</tr>
</tbody>
</table>

Normy

<table>
<thead>
<tr>
<th>Parametry</th>
<th>Wartości</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondensatory mocy. Baterie kompensujące współczynnik mocy w instalacjach niskonapięciowych.</td>
<td>UNE-EN 61921:2004</td>
</tr>
<tr>
<td>Sieci przemysłowe prądu przemiennego, w których występują harmoniczne. Zastosowanie filtrów i kondensatorów instalowanych w sposób równoległy.</td>
<td>UNE-EN 61642:2000</td>
</tr>
</tbody>
</table>
Figura 14: Schemat OPTIM EMS-C.
8.- KONSERWACJA I OBSŁUGA TECHNICZNA

W przypadku jakichkolwiek wątpliwości dotyczących działania lub awarii urządzenia, należy skontaktować się z Działem Obsługi Technicznej CIRCUTOR SA

Dział Obsługi Technicznej
Vial Sant Jordi, s/n, 08232 - Viladecavalls (Barcelona)
Tel.: 902 449 459 (Hiszpania) / +34 937 452 919 (inne kraje)
email: sat@circutor.com

9.- GWARANCJA

CIRCUTOR udziela gwarancji na swoje produkty pokrywającej wszelkie wady produkcyjne na okres dwóch lat od momentu dostarczenia urządzeń.

CIRCUTOR zobowiązuje się naprawić lub wymienić wszelkie produkty obarczone wadą produkcji, które zostaną zwrócone w okresie obowiązywania gwarancji.

- Zwrot produktu zostanie przyjęty i odpowiednia naprawa zostanie wykonana pod warunkiem, że do zwracanego urządzenia zostanie dołączona informacja ze wskazaniem zaobserwowanej wady lub przyczyn zwrotu.
- Gwarancja traci ważność, w przypadku gdy urządzenie było nieprawidłowo użytkowane lub jeśli nie były przestrzegane wskazówki dotyczące magazynowania, instalacji lub konserwacji, podane w niniejszej instrukcji. Nieprawidłowe użytkowanie określa się jako wszelkie sytuacje odnoszące się do zastosowania lub magazynowania, niezgodne z Krajowym Kodeksem Elektrycznym lub w których nastąpiło przekroczenie wartości granicznych wskazanych w rozdziale dotyczącym charakterystyk technicznych i środowiska w niniejszej instrukcji.
- CIRCUTOR nie ponosi żadnej odpowiedzialności za ewentualne szkody w sprzęcie lub w innych elementach instalacji i nie pokryje ewentualnych kar wynikających z możliwej awarii, nieprawidłowej instalacji lub nieprawidłowego użytkowania urządzenia. W konsekwencji, niniejsza gwarancja nie ma zastosowania w razie awarii mającej miejsce w następujących przypadkach:
 - Na skutek przepięć i/lub zakłóceń elektrycznych podczas dostawy prądu
 - Na skutek kontaktu z wodą, jeśli produkt nie posiada odpowiedniej klasy ochrony IP
 - Z powodu braku wentylacji i/lub nadmiernych temperatur
 - Na skutek nieprawidłowej instalacji i/lub braku konserwacji.
 - Jeśli nabywca dokonuje naprawy lub modyfikacji urządzenia bez zgody producenta.
Konformitätserklärung EU

Vorliegende Konformitätserklärung wird unter alleineriger Verantwortung von CIRCUTOR mit der Anschrift: Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Spanien, ausgestellt.

Produkt:
Kompensationsanlagen mit Thyristorschalter

Serie:
EMS-C, OPTIM EMK4, OPTIM EMK5, OPTIM EMK8, OPTIM EMK10, OPTIM EMK12

Marke:
CIRCUTOR

Produktbeschreibung:
Der Gegenstand der Konformitätserklärung ist konform mit der geltenden Gesetzgebung zur Harmonisierung der EU, sofern die Installation, Wartung und Verwendung der Anwendung seinem Verwendungszweck entsprechend gemäß den geltenden Installationsstandards und der Vorgaben des Herstellers erfüllt.

2014/35/UE - Low Voltage Directive
2011/65/UE - RoHS Directive
2014/35/UE - Low Voltage Directive
2011/65/UE - RoHS Directive

Es besteht Konformität mit den folgenden Normen:

IEC 61000-6-2:2016 Ed 3.0
IEC 60831-1:2014 Ed 3.0
IEC 61642:1997 Ed 1.0

Jahr der CE-Kennzeichnung: 2018

Declaración de Conformidad

A presente declaração de conformidade é expedida sob a exclusiva responsabilidade da CIRCUTOR com morada em Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Espanha.

Prodotto:
Batterie automatiche condensatori con contattore statico

Serie:
EMS-C, OPTIM EMK4, OPTIM EMK5, OPTIM EMK8, OPTIM EMK10, OPTIM EMK12

Marca:
CIRCUTOR

O objeto da declaração está conforme a legislação de harmonização pertinente na UE, sempre que seja instalado, mantido e utilizado na aplicação para a qual foi fabricado, de acordo com as normas de instalação aplicáveis e as instruções do fabricante.

2014/35/UE - Low Voltage Directive
2014/35/UE - Low Voltage Directive
2011/65/UE - RoHS Directive
2011/65/UE - RoHS Directive

Está em conformidade com a(s) seguinte(s) norma(s) ou outro(s) documento(s) normativo(s):

IEC 61000-6-2:2016 Ed 3.0
IEC 60831-1:2014 Ed 3.0
IEC 61642:1997 Ed 1.0

Anno di marcatura "CE": 2018

Viladecavalls (Spain), 29/10/2019
General Manager: Ferran Gil Torné

Declarazione di Conformità

La presente dichiarazione di conformità viene rilasciata sotto la responsabilità esclusiva di CIRCUTOR, con sede in Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcellona) Spagna.

Prodotto:
Batterie automatiche condensatori con contattore statico

Serie:
EMS-C, OPTIM EMK4, OPTIM EMK5, OPTIM EMK8, OPTIM EMK10, OPTIM EMK12

Marchio:
CIRCUTOR

L'oggetto della dichiarazione è conforme alla pertinente normativa di armonizzazione dell'Unione Europea, a condizione che venga installato, mantenido e utilizzato nell'ambito dell'applicazione per cui è stato prodotto, secondo le norme di installazione applicabili e le istruzioni del produttore.

2014/35/UE - Low Voltage Directive
2014/35/UE - Low Voltage Directive
2011/65/UE - RoHS Directive
2011/65/UE - RoHS Directive

È conforme alle seguenti normative o altri documenti normativi:

IEC 61000-6-2:2016 Ed 3.0
IEC 60831-1:2014 Ed 3.0
IEC 61642:1997 Ed 1.0

Anno di marcatura "CE": 2018
Instrukcja obsługi
Seria OPTIM EMS-C

PL

DEKLARACJA ZGOINOSCI UE

Niniejsza deklaracja zgodności zostaje wydana na wyłączną odpowiedzialność firmy CIRCUTOR z siedzibą pod adresem: Vial Sant Jordi, s/n – 08232 Viladecavalls (Barcelona) Hiszpania

produkt:
Automatyczne baterie kondensatorów z łącznikiem tryysterowym

Seria:
EMS-C, OPTIM EMK4, OPTIM EMK6, OPTIM EMK8, OPTIM EMKT10, OPTIM EMKT12

marka:
CIRCUTOR

Przedmiot deklaracji jest zgodny z odnośnymi wymaganiami prawodawstwa harmonizacyjnego w Unii Europejskiej pod warunkiem, że będzie instalowany, konserwowany i użytkowany zgodnie z przeznaczeniem, dla którego został wyprodukowany, zgodnie z mającymi zastosowanie normami dołączonymi Instalacji oraz instrukcjami produenta

2014/35/UE Low Voltage Directive
2014/30/UE EMC Directive
2011/65/UE RoHS Directive
2015/863/UE RoHS3 Directive

Jest zgodny z następującymi normami i dokumentami normatywnymi:

IEC 61000-6-2:2016 Ed 3.0
IEC 61000-6-4:2006+A11:2010 Ed 2.1
IEC 60831-1:2014 Ed 3.0
IEC 61439-1:2011 Ed 2.0
IEC 61642:1997 Ed 1.0

Rok oznakowania "CE": 2018

Viladecavalls (Spain), 20/10/2010
General Manager: Ferran Gil Torné